Occupational Channels for Mexican Migration: New Destination Formation in a Binational Context

Matthew Sanderson
Department of Sociology
Kansas State University

Matthew Painter II
Department of Sociology
University of Wyoming

ABSTRACT In the 1990s, Mexican immigration dispersed spatially, leading to the emergence of many “new destinations,” in nonmetropolitan areas of the United States. Previous studies constrain the scope of the analysis to the United States, limiting our understanding of how new destinations are formed. We place new destination formation into a binational context and emphasize the role of supply-side immigration dynamics. We argue that occupations in Mexico provide ready-made paths, or “channels,” for economic incorporation into the United States and that these channels underlie the formation of many new destinations. Using a unique data set on Mexican migration, we estimate a multivariate model that tests for the presence of occupational channels linking analogous sectors of the U.S. and Mexican economies, focusing especially on the food-processing sector. The results demonstrate that Mexican migration is strongly channeled along occupational lines. There are occupational channels linking each of the major economic sectors in Mexico and the United States, but the effect of channeling is particularly strong in the food-processing sector. By empirically identifying the existence of occupational channels, this study uncovers a key explanation of new destination formation in many nonmetropolitan areas.

Introduction
In the 1990s, Mexican immigration dispersed spatially (Donato et al. 2007; Lichter and Johnson 2006; Massey 2008; Zuniga and Hernandez-Leon 2005), leading to the emergence of “new destinations” throughout the United States (Zuniga and Hernandez-Leon 2005), many of which are located in nonmetropolitan areas (Kandel and Cromartie 2004). An emerging body of research has developed largely along two lines. One strand richly describes the challenges of immigrant incorporation in new destinations (Crowley and Lichter 2009; Farmer and Moon 2009; Kandel and Cromartie 2004; McConnell and Miraftab 2009; Millard and Chapa 2004; Pfeffer and Parra 2009; Ziebarth 2006). Another strand documents the role of the U.S. food-processing sector in new destination formation, placing emphasis on how economic restructuring in the industry has generated place-based demand for Mexican immigrant labor (Broadway
2007; Donato et al. 2007; Gouveia and Saenz 2000; Kandel and Parrado 2005; Stull and Broadway 2004; Stull, Broadway, and Griffith 1995).

We approach immigrant economic incorporation and new destination formation as related issues. We begin with a focus on the U.S. food-processing sector, specifically highlighting how economic restructuring in the United States contributes to the changing geography of Mexican migration. Next, drawing on previous research in the area of work and occupations, we argue that occupations in Mexico provide ready-made paths, or “channels,” for economic incorporation into the United States and that these paths ultimately underlie the formation of many new destinations in the United States. Using a unique data set on Mexican migration, we estimate a multivariate model that tests for the presence of occupational channels linking analogous sectors of the United States and Mexican economies. Here, we concentrate especially on the food-processing sector because it has played a key role in the geographic dispersal of Mexican immigration in the United States. The results demonstrate that Mexican migration is strongly channeled along occupational lines. There are occupational channels linking each of the major economic sectors in Mexico and the United States (e.g., agriculture, manufacturing, and services). However, the food-processing channel is particularly strong. We discuss the implications of the results and point to a worthwhile avenue for future research.

Food Processing and New Destinations in the United States

Hispanic immigration in the United States became a national phenomenon in the 1990s, as the geographic distribution of settlement areas diversified to include many sites that had little previous experience of immigration (Donato et al. 2007; Lichter and Johnson 2006; Massey 2008, Zuniga and Hernandez-Leon 2005). Mexican immigration, which constitutes the largest share of Hispanic immigration, is particularly illustrative of this trend. While the “big five” states (i.e., New York, California, Illinois, Texas, Florida) still attract the largest proportion of all immigrants, Mexican immigration into these gateway states has fallen precipitously. In 1990, 86 percent of Mexican immigrants arriving in the previous five years went to one of the five traditional gateway states, but by 2000, the figure dropped to 61 percent (Massey 2008). Mexican immigration into California alone, which had become the largest gateway by the 1980s, accounted for 63 percent of all Mexican immigration in 1990, but was just 28 percent in 2000 (Massey 2008). As the share of migration into traditional destinations has decreased, Mexican immigration has dispersed to “new destinations” throughout the United States (Zuniga and Hernandez-Leon 2005).
Economic restructuring in the U.S. food-processing industry is the most prominent explanation of the changing geography of Mexican immigration (Broadway 2007; Donato et al. 2007; Kandel and Parrado 2005). Over the past 30 years, the U.S. food-processing industry has been restructured from a predominately urban enterprise with relatively high rates of unionization and competitive wages into a rural-based industry with very high rates of firm consolidation, sales concentration, precarious forms of employment, higher turnover rates, declining wages, and an expanding Hispanic immigrant workforce (Kandel and Parrado 2005; Ollinger et al. 2005; Stull and Broadway 2004). Meat processing exemplifies broader trends in the U.S. food-processing sector. It is the largest component of that sector, employing 30 percent of all workers and producing 24 percent of the total value of output (Martinez 2007), and it is the largest manufacturing industry in rural America, generating revenues of $70 billion per year, and employing more than 500,000 employees (Martin 2009). As a result of economic restructuring, 58 percent of the meat-processing labor force now works in rural areas and Hispanic employees constitute at least 37 percent of the labor force (Kandel 2009), of which 50 percent are estimated to be foreign-born noncitizens (GAO 2005).

Thus, it is clear that economic restructuring in the U.S. food-processing industry has generated place-based demand for immigrant labor that, in turn, has spurred the formation of many nonmetropolitan new destinations in the United States. However, by focusing rather narrowly on economic restructuring in the U.S. food-processing sector, or the demand side of the immigration equation, prior research provides only a limited account of new destination formation. Below, we provide a more complete explanation by shifting the focus to a key supply-side dynamic: occupational channeling.

Occupational Channels and Immigrant Economic Incorporation

Mexican migration to the United States is part of a broader social context constructed over a long history of political and economic integration between the two countries, one in which a binational market for Mexican immigrant labor has developed (Canales 2003; Delgado-Wise and Marquez Covarriubis 2007; Massey, Durand, and Malone 2002). Within this context, occupations serve as channels for migration, facilitating migration to specific occupations and sites in the destination country and discouraging migration to other occupations and sites. Previous research provides rich insights into two occupational channeling mechanisms: occupation-based social networks and the strategy of occupational continuity.
First, at work, individuals gain access to social networks that facilitate their ability to migrate and that direct migrants to specific jobs and sites in the destination country. Poros (2001) provides a nuanced understanding of how occupational networks channel migration in a study of Indian immigrants in New York City and London. Historical-structural linkages between India and both the United States and the United Kingdom created the contexts in which labor markets for Indian immigrant labor were formed and subsequently integrated. Within this general context, transnational employment recruitment networks supplied specific forms of Indian immigrant labor in New York City and London. These networks provided valuable information and resources that matched jobs in the United States and United Kingdom with Indian immigrants holding the requisite skills and training for the jobs. As they developed, these networks decreased the costs and risks for both future Indian migrants, who were subsequently better positioned to find work in the United States and the United Kingdom, and employers, who were assured a more stable supply of qualified immigrant labor. Thus, once established, occupations served as channels along which migrants moved into specific forms of employment in the United States and United Kingdom.

Notably, Poros (2001) found that occupational networks operated similarly in different destination contexts, lending credence to the argument that occupational channeling mechanisms are not context-specific, but instead are applicable beyond the case of Indian immigration in the United States and United Kingdom. Indeed, a similar dynamic exists in the Mexican migration stream to the United States. There are long-standing occupational niches for Mexican immigrants in the primary, secondary, and tertiary sectors of the U.S. labor market (Massey et al. 2002; Portes and Rumbaut 2006; Waldinger and Lichter 2003) and demand for immigrant labor in these segments of the U.S. labor market is often supplied through employer recruitment networks. For example, U.S. firms in the agricultural sector have long used recruitment networks as a means of procuring consistent, flexible supplies of Mexican labor (Mize 2006; Massey et al. 1987). However, these networks are not confined to the agricultural sector. Recruitment networks are also particularly important for firms in the U.S. food-processing sector, which augment their direct recruitment strategies by tapping into the family-based social networks of employees (Gouveia and Saenz 2000; Grey and Woodrick 2002; Griffith and Stull 1995). For example, it is well documented that U.S. meat-processing firms rely heavily on employees to refer family members as potential employees: “Human resource managers, whose job was to keep the disassembly
lines fully staffed, soon learned that they could use network recruitment to hire and train good workers. . . . Once a Latino immigrant was hired, she or he would be asked to bring friends or relatives to fill vacant jobs” (Martin 2009:91).

Second, within the context of integrated labor markets and occupational networks, migrants use skills and training derived from work in the origin country to first gain access to the destination country’s labor markets and then to achieve upward economic mobility in these destination countries (Hagan, Lowe, and Quingla 2011). International migration is above all else a means of improving one’s living standards through economic incorporation in the destination country (Portes and Rumbaut 2006). Economic incorporation, however, is subject to a number of constraints, including most importantly, requisite levels of educational attainment and English language proficiency (Borjas 1989). There is a general consensus that economic incorporation conforms to a “U-shaped” pattern across a range of labor market outcomes (Akresh 2008; Borjas 1989; Chiswick, Lee, and Miller 2005). That is, immigrants usually experience downgrading in labor market outcomes upon entering the United States largely because human capital obtained in the origin country is undervalued in the United States. Downgrading is often followed by some degree of recovery after the acquisition of U.S.-specific skill sets (e.g., education and English language proficiency) that, in some cases, allows immigrants to reduce their initial disadvantage relative to native-born Americans.

Despite the prominence of education and English proficiency, a growing body of research suggests that these measures do not fully capture the experience of labor market incorporation, particularly for low-skilled immigrants (Akresh 2006, 2008; Hagan et al. 2011; Hernandez-Leon 2004; Semyonov and Gorodzeisky 2004). In this regard, Hagan et al. (2011) argue that by emphasizing the acquisition of U.S.-specific human capital, much prior research neglects the role of employment skills and job training derived from the origin country in economic incorporation. Occupations in the country of origin provide training and skills that, in the context of well-integrated labor markets, allow low-skilled migrants access to similar forms of work in labor markets in the country of destination where wages are higher, potentially minimizing labor market downgrading, or flattening the U-shaped process into a J-shaped process: “Pathways to economic mobility in the U.S. labor market began in immigrants’ home communities” (Hagan et al. 2011:161). As a result, migrants often attempt to achieve some degree of occupational continuity by procuring employment in occupational sectors in the destination country that closely match the skill sets
they acquired from labor markets in their country of origin. This dynamic encourages the formation of occupational channels.

Mexican migration to the United States is emblematic of this process. Low-skilled Mexicans with work experience in the Mexican agricultural sector have gained access to the U.S. agricultural labor market for decades (Massey et al. 2002; Mize and Swords 2010), leading to well-established occupational channels linking the Mexican and U.S. agricultural labor markets. These occupational channels, however, have expanded beyond labor markets for low-skilled agricultural labor to include high-skilled migration. Hernandez-Leon (2008) provides a study of high-skilled migration from Monterrey, Mexico, to Houston, Texas, where immigrants with occupational skills in Mexico’s industrial sectors gained access to work in the U.S. oil industry. While migrant networks and labor demand were both important influences, migrants’ occupations in Mexico were crucial to explaining the orientation of these flows: “Ultimately . . . what made [niche occupational incorporation] possible was the fact that Monterrey-origin migrants possess the industrial background and skills that allow them to take on jobs as machinists, precision welders, and industrial maintenance mechanics” (Hernandez-Leon 2004:446).

Occupational continuity not only provides access to destination country labor markets, it is also used to achieve upward economic mobility, particularly for migrants with lower levels of human capital. Hagan et al. (2011) describe how Mexican migrants use a strategy of brincando (i.e., job jumping) to circumvent the problems of discrimination and exclusion that many Mexican immigrants confront upon entering U.S. labor markets. After securing employment in jobs that offer relatively limited prospects for mobility, Mexican immigrants use the skills and training they acquired in Mexico to secure better jobs: “As a number of immigrants told us when we asked where they acquired their skills, ‘yo traje la técnica’ (I brought the method with me)” (Hagan et al. 2011:161). It is precisely the ability to use the skills they acquired in Mexico that gives many immigrants the confidence to take the risk of job-jumping (Hagan et al. 2011). By increasing the prospects for upward economic mobility, occupational continuity promotes channeling.

Thus, demand for immigrant labor does not itself explain new destination formation. A more comprehensive explanation requires considering the supply side of the immigration equation. We argue that occupational channeling, promoted by family-based employment networks and encouraged by the prospects for occupational continuity, is a key dynamic through which labor demand in specific sectors of the U.S.
economy is met with immigrant labor supplies from Mexico. Thus, the occupational sector in which a migrant is employed in Mexico should predict the occupational sector that a migrant enters in the United States. However, this hypothesis has not been systematically tested.

Data and Method

Although it is a relatively intuitive concept, occupational channeling has been difficult to empirically identify because of data limitations. That is, testing the concept empirically requires data on individual migrants’ occupations in both the origin and destination countries, information that is exceedingly rare in migration studies. This study uses data from the Mexican Migration Project (MMP124), a collaborative project based at Princeton University and the University of Guadalajara. The MMP is the only extant migration data set that collects information necessary to test the concept of occupational channeling against a comprehensive set of alternative explanations.

The project collected retrospective survey data on 150–200 households randomly selected in each community, and a snowball sample of migrants in U.S. households. It collected supplemental aggregate data on the 124 origin communities. While the MMP purposively samples communities in primary sending regions of Mexico, the most recent version includes a wider variety of sending states and communities than any previous version. Systematic comparison between the MMP and a nationally representative survey of the Mexican population has demonstrated that the MMP data are representative of the Mexican population (Massey and Zenteno 2000). As a result, MMP data have been used to estimate models of a wide variety of outcomes for Mexican immigration to the United States (Durand and Massey 2006).

The sample includes non-U.S. citizen, male household heads aged 16 or older who made their last trip to the United States after 1965 and were employed in the United States during the migration. Data were available for 3,269 persons from 124 communities with complete information on each of the variables used in the analysis. Although the MMP collects information on all household members, both migrants and nonmigrants, the sample is limited to those who have migrated because the purpose is to compare migrants with migrants. The MMP includes data on the migrant’s first and last trip to the United States. Migrants who made only one trip have equivalent information entered in the last trip category. Including only migrants who moved after 1965 limits recall error among respondents. These are commonly accepted practices for analyses using MMP data.
Dependent Variable

The dependent variable is a categorical variable indicating the occupational sector in which a migrant worked in the United States. The MMP categorizes occupations according to classifications used by Mexico’s National Institute of Statistics and Geography (INEGI). The dependent variable has four categories: (1) food-processing sector; (2) agricultural sector; (3) manufacturing, transportation, and construction sector; and (4) services sector. The food-processing sector includes skilled and unskilled production workers employed as supervisors, equipment operators, or line workers in the food, beverage, and tobacco industry (INEGI occupational codes 510, 520, 530, and 540). The food, beverage, and tobacco industry includes the processing of meat, fish and derivatives, dairy products, grains, fruits and vegetables, sugar and chocolate, tobacco, and nonalcoholic drinks. Complete data on the variables included in the analysis were available for 155 workers in the U.S. food-processing sector; 939 workers in the U.S. agricultural sector; 1,463 workers in the U.S. manufacturing, construction, and transportation sector; and 712 workers in the U.S. services sector, resulting in a total sample size of 3,269.

Key Independent Variable

The independent variable of greatest interest is a binary variable that indicates whether a Mexican migrant worked in the Mexican food-processing sector as a primary occupation. Again, the MMP categorizes occupations according to classifications used by Mexico’s National Institute of Statistics and Geography (National Institute of Statistics 1996) and the food-processing sector includes skilled and unskilled production workers employed as supervisors, equipment operators, or line workers in the food, beverage, and tobacco industry (INEGI occupational codes 510, 520, 530, and 540). This variable tests whether migrants working in the U.S. food-processing sector are channeled along occupational lines from the Mexican food-processing sector. Complete data were available for 93 workers in the Mexican food-processing sector.

Control Variables

To empirically distinguish between the influence of food-processing employment in Mexico and other occupational sectors in Mexico, the analysis includes binary variables indicating whether a migrant was employed in the Mexican agricultural sector; the Mexican manufacturing, construction, and transportation sector; or the Mexican service
sector (both professional and nonprofessional sectors) or was unemployed in Mexico. Theory and previous research suggest several other important control factors for microlevel studies of migration, including human capital endowments, migratory capital derived from social networks (i.e., migratory social capital), U.S. destination community type, Mexican origin community type, and U.S. immigration policy era.

The analysis controls for three dimensions of human capital: years of education, English proficiency, and migration status on the last trip to the United States. Education is a continuous variable that captures the total number of years spent in formal schooling. English proficiency is a binary variable that indicates whether the migrant can speak and understand “some or much” English. Migration status on the last trip is indicated by a binary variable indicating whether the migrant’s last trip was undocumented. An undocumented migration is defined by the MMP as a migration that occurred without proper authorized documentation or with falsified documentation.

The analysis also includes controls for migratory social capital that capture the individual, family, and community dimensions of social networks. At the individual level, migratory social capital is measured as a continuous variable indicating the number of previous migrations to the United States. Family-based social capital is represented in three ways: (1) a binary variable indicating whether a mother or father had ever migrated to the United States, (2) a binary variable indicating whether the migrant had a sibling who had ever migrated to the United States, and (3) a binary variable indicating whether a Mexican immigrant reported obtaining employment in the United States through a recommendation from a relative. Community-based migratory social capital is measured in two ways. A continuous variable measures the number of friends who have ever migrated to the United States. A second continuous variable indicates the percentage of adults in the origin community who have migrated to the United States. Data for this variable were available in decades (i.e., 1970, 1980, 1990, and 2000) so they were matched to observations at decade midpoints based on the year of the last migration. For example, migrants who made a last trip between 1984 and 1995 were assigned a community migration prevalence ratio for 1990 in order to account for the general context of migration experience in the origin community around the time of the migration.

Occupations are part of labor markets that are situated spatially. To statistically distinguish between “place” effects and “occupation” effects, the analysis includes controls for destination type in the United States and origin type in Mexico. Based on McConnell’s (2008) typology of
U.S. destinations, we included binary variables that represent four types of U.S. destinations: large traditional urban, small traditional urban, nontraditional urban, and rural. McConnell’s typology uses data from an earlier version of the MMP data (MMP107), which includes 17 fewer origin communities than the data set used here. However, all of the U.S. destinations included in the MMP124 were also included in the MMP107, so the analysis required no alterations to McConnell’s typology. Large traditional urban area is the reference category. To control for the types of Mexican origin communities, the analysis includes a variable indicating whether a migrant lived in an urban area in Mexico. Rural and urban are defined using the MMP’s categorization of metropolitan areas in which “urban” is equivalent to “metropolitan area” or “smaller urban area” and “rural” is equivalent to “town” or “ranchero.” Rural is the reference category.

Finally, the decision, or ability, to work in a particular economic sector might be influenced by the immigration policy context of the United States (Massey et al. 2002). Thus, the analysis includes four binary variables that indicate the major policy eras in Mexican immigration to the United States since 1965: the post-Bracero era (1965–79); the Immigration Reform and Control Act (IRCA) era (pre-IRCA, 1980–86; post-IRCA, 1987–90); and the Illegal Immigration Reform and Immigrant Responsibility Act (IIRIRA) era (pre-IIRIRA, 1991–96; post-IIRIRA, 1997–2008). The post-Bracero era is the reference category.

Estimation Technique

We estimated the models using multinomial logistic regression with robust standard errors and MMP sampling weights. Robust standard errors correct for the clustering of respondents in communities and sampling weights address the MMP sampling strategy that produces higher sampling fractions in smaller places. Multinomial logistic regression is an extension of binary logistic regression, whereby the model simultaneously estimates binary logits between each category of the outcome variable (Long 1997). In this case, the model makes three simultaneous comparisons: (1) between the food-processing and agricultural sectors, (2) between the food-processing and manufacturing sectors, and (3) between the food-processing and service sectors. In other words, this technique systematically delineates the factors explaining whether a Mexican immigrant worked in food processing as opposed to another specific sector of the U.S. economy, holding all other factors constant. The results of Wald tests and likelihood ratio
tests confirm that each pairing of the dependent variable is independent from the other pairings, which indicates that the independence of irrelevant alternatives assumption has not been violated (Long and Freese 2003).

Results

Descriptive Results

Table 1 presents descriptive statistics that provide a profile of Mexican migration into the U.S. food-processing sector. We present these statistics in terms of the key independent variable (occupation in Mexico) in order to provide a perspective of Mexican migration from the Mexican side. The multivariate analysis tests whether this variable predicts the occupation a Mexican immigrant will enter in the United States. We highlight a few key findings before turning to the multivariate results.

First, Mexican migration into the U.S. food-processing sector is strongly channeled along occupational channel lines: 61 percent of migrants working in the Mexican food-processing sector migrated for work in the U.S. food-processing sector. Indeed, the data indicate that there are occupational channels linking all three major sectors of the U.S. and Mexican economies, as migrants from each sector of the Mexican economy are more likely to be employed in the same sector of the U.S. economy.

Second, the data illustrate the role of the U.S. food-processing sector in the changing geography of Mexican migration to the United States. Mexican food-processing workers are more likely than their counterparts in manufacturing and services to migrate for work in nontraditional urban and rural areas of the United States.

Third, family-based employment networks are important for Mexican food-processing workers. Approximately 42 percent of migrants from the Mexican food-processing sector indicate that they obtained employment in the United States on the basis of a recommendation from a family member, a higher proportion than any other sector.

Finally, the food-processing stream draws on newer segments of the Mexican migration stream. Migrants from the Mexican food-processing sector have less personal migration experience, making only two migrations to the United States, one-half as many as the typical migrant working in the U.S. agricultural sector. In addition, these migrants are also more likely to come from urban areas of Mexico (almost half), which are nontraditional sending areas, and a much higher percentage migrated in the most recent policy era (well over a third).
Thus, the descriptive data provide some preliminary evidence supporting the main hypothesis. We next test the explanatory power of occupational channels against alternative explanations of Mexican migration in a multivariate analysis.

Multivariate Results

Table 2 presents the results of the multinomial logistic regression. There are three models, each of which compares the likelihood of migrating...
Table 2. Multinomial Logistic Regressions Predicting Probability of Employment in the U.S. Food-Processing Sector.

<table>
<thead>
<tr>
<th>Occupation in Mexico</th>
<th>(2.1)</th>
<th>(2.2)</th>
<th>(2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food processing</td>
<td>Log-odds/Z</td>
<td>RRR</td>
<td>Log-odds/Z</td>
</tr>
<tr>
<td>Agriculture vs. FP</td>
<td>-3.40***</td>
<td>0.03</td>
<td>-4.32***</td>
</tr>
<tr>
<td>(MCT)</td>
<td>(-4.01)</td>
<td></td>
<td>(-5.49)</td>
</tr>
<tr>
<td>Service</td>
<td>-1.19**</td>
<td>0.30</td>
<td>1.03**</td>
</tr>
<tr>
<td>(Professional)</td>
<td>-1.34***</td>
<td>0.26</td>
<td>-0.05</td>
</tr>
<tr>
<td>(Unemployed)</td>
<td>-1.65†</td>
<td>0.19</td>
<td>-0.08</td>
</tr>
<tr>
<td>Human capital</td>
<td>-0.09†</td>
<td>0.91</td>
<td>-0.01</td>
</tr>
<tr>
<td>Education</td>
<td>0.52</td>
<td>1.38</td>
<td>0.34</td>
</tr>
<tr>
<td>(Undocumented)</td>
<td>-0.54</td>
<td>0.58</td>
<td>0.01</td>
</tr>
<tr>
<td>English</td>
<td>-1.18</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Migratory social capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. migrations</td>
<td>0.17***</td>
<td>1.19</td>
<td>0.14*</td>
</tr>
<tr>
<td>(Parent migrated)</td>
<td>0.14</td>
<td>1.15</td>
<td>0.03</td>
</tr>
<tr>
<td>(Sibling migrated)</td>
<td>-0.51</td>
<td>0.60</td>
<td>-0.31</td>
</tr>
<tr>
<td>(Friend migrated)</td>
<td>0.02</td>
<td>1.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Community migration</td>
<td>2.06</td>
<td>7.84</td>
<td>2.25†</td>
</tr>
<tr>
<td>(Relative job referral)</td>
<td>-0.63*</td>
<td>0.53</td>
<td>-0.41†</td>
</tr>
<tr>
<td>U.S. destination type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small traditional urban</td>
<td>2.01***</td>
<td>7.48</td>
<td>-0.41</td>
</tr>
<tr>
<td>(Nontraditional urban)</td>
<td>0.20</td>
<td>1.22</td>
<td>-1.50***</td>
</tr>
<tr>
<td>Rural</td>
<td>1.08*</td>
<td>2.95</td>
<td>-1.31**</td>
</tr>
<tr>
<td>Mexican origin type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0.09</td>
<td>1.09</td>
<td>0.09</td>
</tr>
<tr>
<td>U.S. policy era</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-IRCA</td>
<td>-0.22</td>
<td>0.81</td>
<td>-0.13</td>
</tr>
<tr>
<td>Post-IRCA</td>
<td>-0.16</td>
<td>0.85</td>
<td>0.40</td>
</tr>
</tbody>
</table>
into the U.S. food-processing sector with migrating into one of the major sectors of the U.S. economy. Model 2.1 compares the food-processing sector with the agricultural (i.e., primary) sector. Model 2.2 compares the food-processing sector with the manufacturing, construction, and transportation (i.e., secondary) sector. Model 2.3 compares the food-processing sector with the services (i.e., tertiary) sector.

There are three key findings. First, the results provide substantial support for the hypothesis that migration is channeled along occupational lines linking the Mexican and U.S. food-processing sectors. Work experience in the Mexican food-processing sector lowers the probability of working in the U.S. agricultural sector by 97 percent (Model 2.1), the U.S. manufacturing sector by 99 percent (Model 2.2), and the U.S. service sector by 99 percent (Model 2.3). Indeed, primary occupation in the Mexican food-processing sector is the strongest predictor of whether a Mexican migrant will enter the U.S. food-processing sector.

Second, the U.S. food-processing sector is an important explanation of the changing geography of Mexican immigration to the United States. Mexican immigrants in all other sectors (i.e., agriculture, manufacturing, and services) are more likely than food-processing workers to be found in traditional settlement areas of the United States. Agricultural workers are

Table 2. Continued

<table>
<thead>
<tr>
<th>(2.1) Agriculture vs. FP</th>
<th>(2.2) MCT vs. FP</th>
<th>(2.3) Service vs. FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-odds/ Z</td>
<td>RRR</td>
<td>Log-odds/ Z</td>
</tr>
<tr>
<td>Pre-IIRIRA</td>
<td>-0.68</td>
<td>0.51</td>
</tr>
<tr>
<td>(1.14)</td>
<td>(-0.05)</td>
<td>(-0.03)</td>
</tr>
<tr>
<td>Post-IIRIRA</td>
<td>-1.77***</td>
<td>0.17</td>
</tr>
<tr>
<td>(3.93)</td>
<td>(-1.48)</td>
<td>(-0.066)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.80***</td>
<td>0.17</td>
</tr>
<tr>
<td>(4.58)</td>
<td>(3.62)</td>
<td>(2.14)</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Pseudo LL</td>
<td>-25,647</td>
<td></td>
</tr>
<tr>
<td>Wald Chi²</td>
<td>7,213***</td>
<td></td>
</tr>
<tr>
<td>AICc</td>
<td>51,433</td>
<td></td>
</tr>
<tr>
<td>BICd</td>
<td>51,853</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3,269</td>
<td></td>
</tr>
</tbody>
</table>

Notes: For occupation in Mexico, agriculture is reference category. For U.S. destination type, large traditional urban is the reference category. For Mexican origin type, urban is the reference category. For U.S. policy era, post-Bracero is the reference category.

a **FP** = food-processing sector.

b **MCT** = manufacturing, construction, and transportation sector.

c **AIC** = Akaike Information Criterion.

d **BIC** = Bayesian Information Criterion.

† * p < .10; * * p < .05; ** p < .01; *** p < .001 (two-tailed tests).

474 Rural Sociology, Vol. 76, No. 4, December 2011
more likely than food-processing workers to be found in rural and small, traditional urban settlement areas of the United States (Model 2.1). Manufacturing workers are 78 percent less likely to be located in non-traditional urban areas and 73 percent less likely to be located in rural areas than their counterparts in the food-processing sector. Similarly, workers in the U.S. service sector are 66 percent less likely to be located in non-traditional urban areas and 65 percent less likely to be located in rural areas than U.S. food-processing workers.

Third, family-based employment networks are an important mechanism through which migrants gain access to the U.S. food-processing sector. In general, migrants in the food-processing channel are less well embedded in migratory social networks, making fewer individual trips to the United States, coming from newer sending areas of Mexico, and arriving in the United States more recently. At the individual level, each migration to the United States raises the odds of entering the agricultural sector by 19 percent (Model 2.1), the manufacturing sector by 15 percent (Model 2.2), and the service sector by 10 percent (Model 2.3) compared to the food-processing sector. At the community level, food-processing workers are more likely to have originated from a community in which fewer members have migration experience. Indeed, communities with higher proportions of migrants are more likely to send migrants to the U.S. manufacturing and service sectors than the U.S. food-processing sector. Additionally, the food-processing channel comprises largely migrants who have entered the United States relatively recently. Mexican migrants are more likely to enter the U.S. food-processing sector in the post-IIRIRA period (i.e., after 1997). No other era predicts employment in the U.S. food-processing sector.

Although food-processing workers have less access to migratory social networks, the results indicate that the networks they do have are important in gaining entrance in the U.S. food-processing sector. In this respect, the results underscore the importance of family-based employment networks. While migratory social networks are undoubtedly important for all occupational channels, these networks are particularly important for food-processing workers. Securing employment on the basis of a referral from a family member lowers the odds of working in the U.S. agricultural sector by 47 percent (Model 2.1), the manufacturing sector by 34 percent (Model 2.2), and the service sector by 53 percent (Model 2.3) compared to the U.S. food-processing sector. Food-processing workers are likely more reliant on family-based employment networks because of the geography of this form of employment in the United States. Food-processing work in the United States is now located largely in nonmetropolitan areas and nontraditional urban destinations that, by definition, have smaller
agglomerations of coethnic persons, less dense migratory networks, and therefore higher risks and costs associated with movement. Food-processing workers rely more heavily on family-based employment networks to mitigate the higher risks and costs associated with migration into nontraditional settlement areas of the United States.

Together, these findings support our main argument: occupational channeling underlies the formation of many new destinations in the United States. There is an occupational channel linking the Mexican and U.S. food-processing sectors. This channel comprises largely less well networked migrants who use work experience in the Mexican food-processing sector and family-based employment networks to gain access to the U.S. labor market. Employment demand for immigrant labor in the U.S. food-processing sector directs these migrants into nontraditional settlement areas.

Two other findings are notable. Interestingly, occupational channeling is not confined to the food-processing sector. The results indicate there are occupational channels along which migrants move from the Mexican economy into analogous sectors of the U.S. economy. Mexican agricultural workers are much more likely to migrate for work in the U.S. agricultural sector than Mexicans with work experience in other sectors of the Mexican economy (Model 2.1). Indeed, working in any other, nonagricultural, sector of the Mexican economy lowers the odds of entering the U.S. agricultural sector. Similarly, working in the Mexican secondary sector (i.e., manufacturing, construction, and transportation) raises the odds of entering the U.S. secondary sector by 281 percent (Model 2.2) and working in the Mexican tertiary sector (i.e., services) raises the odds of entering the U.S. service sector by 326 percent (Model 2.3). Thus, occupational channels are clearly important in explaining the general pattern of Mexican migration to the United States.

While much previous research stresses the importance of education and English proficiency for labor market incorporation, these variables do not explain the incorporation of Mexican immigrants in occupational sectors of the U.S. economy after accounting for primary occupation in Mexico. The null findings for these conventional measures imply that there are established labor market niches in the U.S. economy that are not sensitive to differences in human capital levels. This is not a particularly novel finding (see, e.g., Massey et al. 2002; Portes and Rumbaut 2006; Waldinger and Lichter 2003). What is more interesting is the contrast between the conventional human capital measures and occupation in Mexico. The model’s direct empirical comparison exposes the limitations of education and English proficiency as predictors of immigrant economic incorporation in the
United States. Occupational channeling is clearly a more powerful predictor, a finding that confirms prior research suggesting that education and English proficiency do not fully capture the experience of labor market incorporation, particularly for low-skilled immigrants (Akresh 2006, 2008; Hagan et al. 2011; Hernandez-Leon 2004; Semyonov and Gorodzeisky 2004).

Discussion

Over the past 20 years, Mexican immigrants in the United States have dispersed to “new destinations” throughout the U.S (Zuniga and Hernandez-Leon 2005). A growing body of research both documents the importance of the U.S. food-processing sector in the formation of new destinations and investigates the challenges of immigrant incorporation in these communities. However, previous studies largely limit the scope of the analysis to the United States, focusing on the implications of Mexican immigration for new destination communities or the role of economic restructuring in the U.S. food-processing sector in generating the employment demand that draws immigrants to new destinations.

This study provides a more complete account of the formation of new destinations by placing this phenomenon into a binational context and emphasizing the role of supply-side immigration dynamics. Our empirical analysis revealed that Mexican migration to the United States is strongly channeled along occupational lines linking analogous sectors of the U.S. and Mexican economies. These channels are augmented by family-based employment networks and the prospect of occupational continuity, which enhances the possibility of upward economic mobility in the United States by allowing migrants to more readily transfer skills and experience from work in Mexico into the United States. Our analysis indicated that there are occupational channels linking the agricultural, manufacturing, and service sectors in Mexico and the United States, but the channeling effect of occupations is particularly strong in the food-processing sector, the sector responsible for a large proportion of non-metropolitan new destination immigration.

The importance of occupational channeling raises an important question for future research on immigrant economic mobility in new destinations: Does occupational channeling promote upward economic mobility for Mexican immigrants in new destinations? That is, do Mexican immigrants who secure employment in new destinations that closely matches their existing occupational skill sets fare any better than migrants who experience a mismatch between their skill sets and employment? Occupational channeling may allow Mexican migrants’ access to similar forms of employment in the United States, but whether it opens up the
possibility of leveraging these initial forms of employment into upward economic mobility in the United States remains an empirical question.

Mexican migrants face significant obstacles to economic mobility regardless of destination context, but new destinations may be especially formidable because they have relatively limited employment opportunities and lack established communities of coethnic persons. Yet there is very little quantitative research on immigrant incorporation in nonmetropolitan areas in general (Saenz and Torres 2003), and extant research on incorporation in new destinations provides only mixed results. For example, Crowley, Lichter, and Qian (2006) show that Mexican immigrants in new destinations have lower poverty rates than Mexicans in traditional settlements in the U.S. Southwest. However, Kandel et al. (2011) report that Latinos in new destinations generally have lower levels of economic well-being than Latinos in other rural and urban areas. Although new destinations had fewer Latinos below the poverty line than other rural areas, Latinos in new destinations are no more likely to secure full-time employment than Latinos in other areas, are less likely to earn incomes at the U.S. median income level, and are less likely to own homes than Latinos in other rural areas (Kandel et al. 2011).

The results presented here suggest that incorporating prior work experience in Mexico could provide additional insight into the question of immigrant economic incorporation in new destinations. For example, Pfeffer and Parra (2009) found that Latino immigrants in rural areas who relied less on coethnic social networks to secure future employment were more likely to get jobs with better prospects for upward mobility. That is, immigrants who secured better jobs often did so on their own, and this was particularly the case for immigrants with relatively lower levels of human capital (Pfeffer and Parra 2009). Given that the ability to transfer skills from the Mexican to the U.S. labor market promotes “job jumping” to better forms of employment (Hagan et al. 2011), it is thus likely that occupational channeling promotes upward economic mobility over time among Mexicans with lower levels of human capital in new destinations. Testing this hypothesis was beyond the scope of this article, but our results suggest that this would be a worthwhile topic for future research.

References

